コンピュータと情報処理

情報の科学 第24回授業 06コンピュータによる情報の処理と表現 対応ワークシート: 21exp24.xls

注意!

- 本日の内容は・・
 - -極めて重要!
 - 必ず理解!
- 理解しないまま放置すると••
 - -この先全くわからなくなる!

アナログとディジタル(p.13)

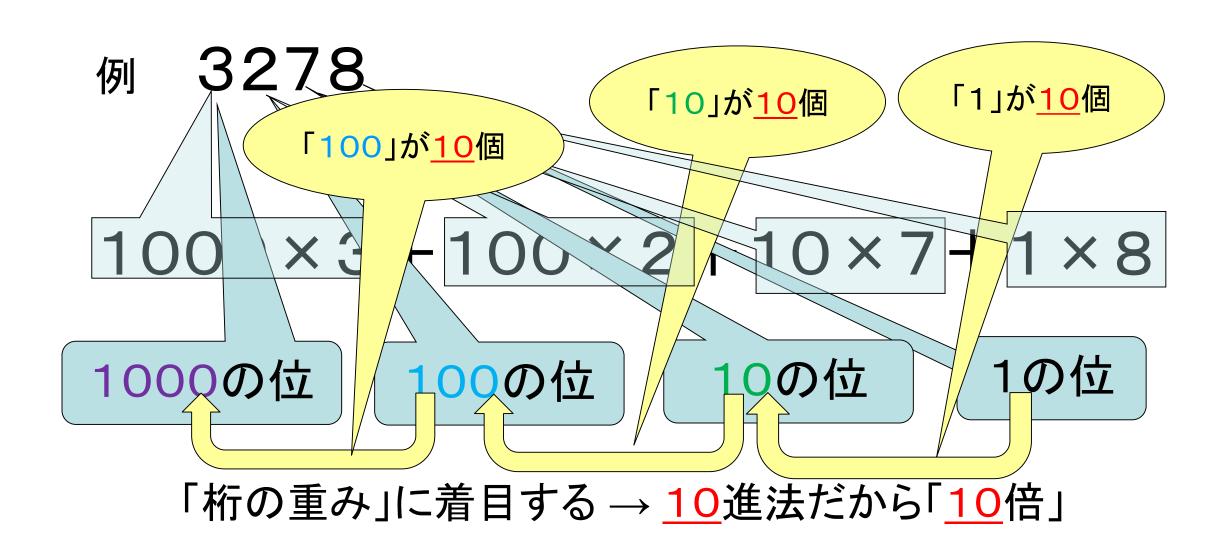
- ・アナログとは
 - 連続する量を他の連続する量を用いて表す方式
- ディジタルとは
 - 連続する量を一定間隔ごとに区切り、 数値を用いて表す方式

コンピュータとディジタルデータ

ほとんどのコンピュータは、2進法で表されたディジタルデータを用いて処理を行っている。

(教科書p.13 側注)

	0	1
スイッチ	OFF	ON
電圧	低い	高い
磁石	S極	N極


2進法と16進法、情報の量

教科書 pp.20-21

10進法とは

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9の10種類の数を使って 表す方法
- 1つのケタの最大の数 9 の次はケタが1つ増えて 10 になる

10進法での「桁の重み」

2進法とは

- O, 1の 2種類の「数」を使って表す方法
- 1つのケタの最大の数「1」の次はケタが1つ増えて「10」になる

2進→10進

「桁の重み」に着目する \rightarrow 2進法だから「2倍」

練習1

・ 次の2進で表された数を10進に直せ

	4の位				2	の	位	1の位
1.	101001		U	I	U	U	1	32+ 0+8+0+0+1=41
2.	1111	O	O	1	1	1	1	0+ 0+8+4+2+1=15
3.	10000	O	1	O	O	O	0	0+16+0+0+0+0=16
4.	110011	1	1	O	O	1	1	32+16+0+0+2+1=51
5.	111111	1	1	1	1	1	1	32+16+8+4+2+1=63

32の位

16の位

8の位

10進→2進

たとえば、

$$101001 \Rightarrow 32 + 0 + 8 + 0 + 0 + 1 = 41$$

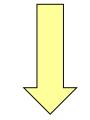
逆に考えれば、

$$41 = 32 + 0 + 8 + 0 + 0 + 1 \Rightarrow 101001$$

→ 10進から2進に変換するには、その10進の数に相当する 1, 2, 4, 8, 16, ... の和の組み合わせが見つかれば良い。

10進→2進(組み合わせ方式)

例1) 10進法で表された「46」を2進法で表す

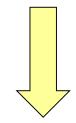

```
※2進法それぞれの桁の数が「ある(=1)」かどうかを考える。
46を超えない最大の2の累乗数 ••• 32 (⇒ 大きい数から取り除いていく!)
46の中に32(=2^5)が「ある」 \rightarrow 32の位:1 残り:46-32=14
 14の中に16(=24)が「ない」 → 16の位:0 残り:14
 14の中に 8(=23)が「ある」 → 8の位:1 残り:14-8=6
 6の中に 4(=2²)が「ある」 → 4の位:1 残り: 6-4=2
 2の中に 2(=2<sup>1</sup>)が「ある」 → 2の位:1 残り: O
  Oの中に 1(=1)が「ない」→ 1の位:O 残り: O
よって、(46)_{10}=(32+0+8+4+2+0)_{10} \Rightarrow (1011110)_{2}
```

※このやり方はわかりやすいが、数が大きくなったら、計算が大変!

10進→ 2進(教科書方式:p.20)

例2) 10進法で表された「46」を2進法で表す

この向きに数字を拾っていく!


(101110)2 となる

1 ÷ 2 = 0 あまり1

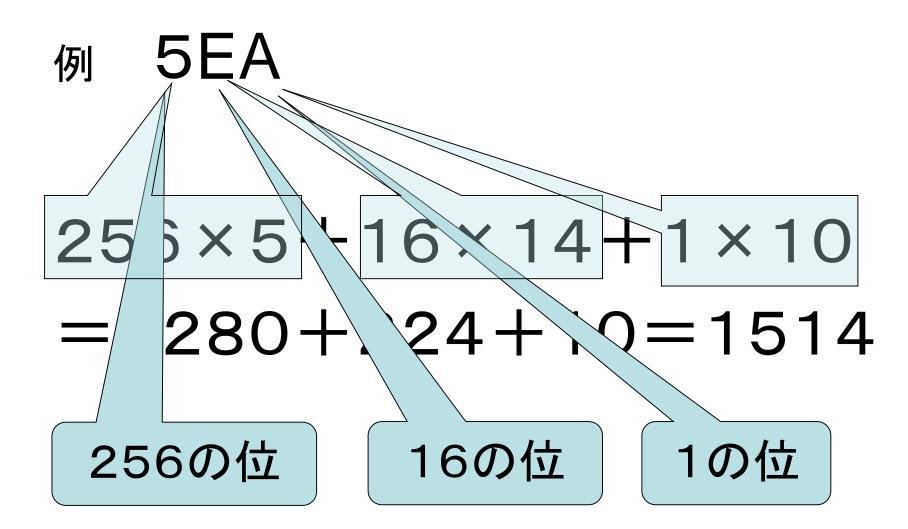
練習2

問1 (58)10 を2進法で表す

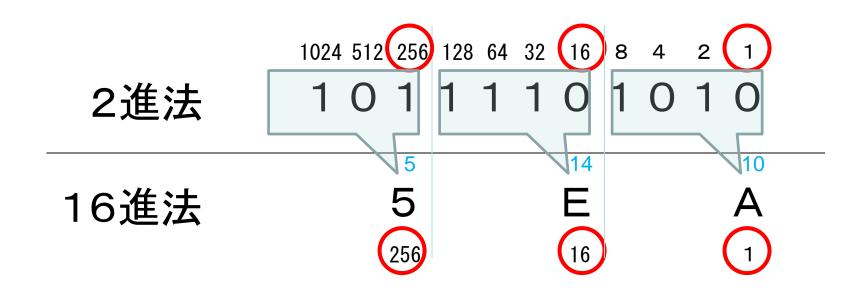
この向きに数字を拾っていく!

 $(111010)_2$

問2 (1010)10

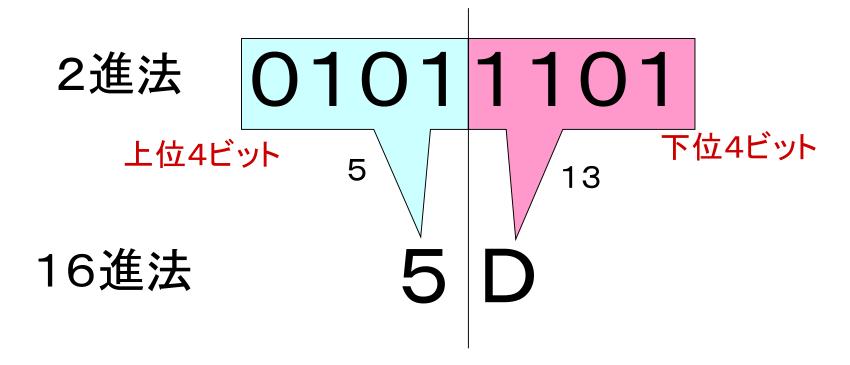


 $(11111110010)_2$


16進法

- 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F の 16種類の数を使い、表す方法
- 「9」の次は「10」ではなく、「A」を用いる
- 1つのケタの最大の数「F」の次にケタが 上がり、「10」となる

16進法→10進法



2進法と16進法

- 2進法と16進法では、繰り上がりのタイミングが同じ!!
 - → 2進の4ケタをそのまま16進に変換できる!
 - → 私たちは、2進より16進の方が扱いやすい!

2進法と16進法

・このように、2進8文字(1バイト)は、16進 2文字で表すことができる。

接頭語(教科書p.13)

単位	読み方		
bit	ビット		
В	バイト	1B=	8bit
KB	キロバイト	1KB=	1024B
MB	メガバイト	1MB=	1024KB
GB	ギガバイト	1GB=	1024MB
TB	テラバイト	1TB=	1024GB
PB	ペタバイト	1PB=	1024TB

2進法表現をしているため、

 $k \rightarrow 1000 (= 10^3) \quad K \rightarrow 1024 (= 2^{10})$

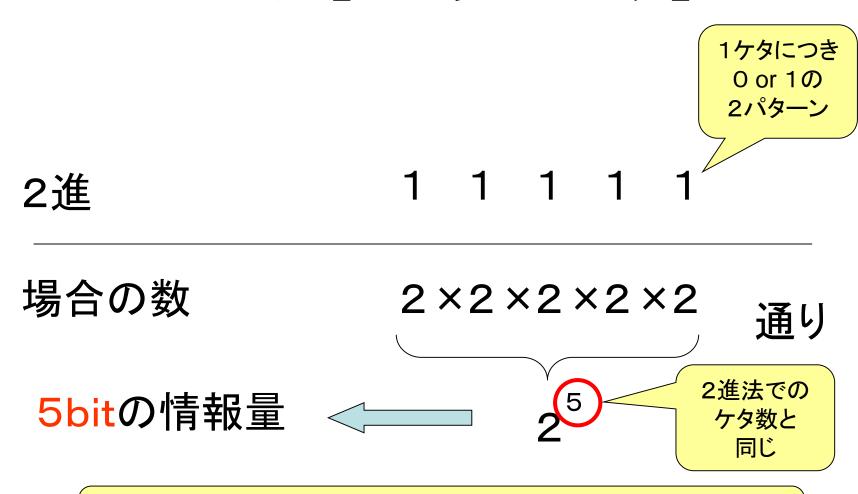
と表していることに注意!

n 進法の表現

・特に厳密な決まりはないが、一般的には、普段利用している10進法と区別するため、右下に小さく(n)を記入する。

例) 2進法での「11001」 → 11001₍₂₎ 16進法での「3824」 → 3824₍₁₆₎

☆特に、プログラムの世界では、16進は


- ・はじめに「Ox」をつけて標記 例)Ox6B
- •おわりに「h」をつけて標記 例) 13h など、さまざまな表記がされている。

情報の量

• コンピュータでは、Oと1の電気信号に情報を変換、すなわち2 進法で処理をしている。

• 2進法の数1ケタを「1bit(ビット)」とし、情報の量の単位とする。

「2進法」と「場合の数」

2進法での「ケタ数」が情報の量(bit数)と考えて良い

2進法と場合の数

(bit)	場合の数
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

「一つ上のセル」を2倍することを コピーしていけばよい

×2 ×2 M)(L5の場所)・・ =L4 * 2 L5を「コピー」、 L6からL28まで「貼り付け」

これらのことから5bitの情報量では、32 通りのものが区別でき、512通りのものを区別するには 9 bit

100通りのものを区別するには 7 bit の情報量が必要であることがわかる

まとめ

- 2進法は、Oと1の世界
 - 2つ集まると位が上がるしくみ。
 - 位の「重み」は2倍ずつ増えていく。1の位、2の位、22の位、23の位、・・・
- ・ 16進法は16ずつ集まり位が上がるしくみ。2進法を「簡略化」して表現できる
 - 11, 12, · · · , 15の代わりに A, B, · · , Fを用いる
 - 1の位、16の位、16²の位、16³の位、・・・
 - 2進4桁を16進1桁で「置き換える」ことができる
- ・「n」進法でも、基本的な考え方は同じ
 - 位の「重み」を意識する
 - 情報では、2進と16進を扱います。
- 1ビットの情報量で、2つのものを区別できる
 - 2進法で表された数の桁数=ビット数
 - 1ビット増えると、区別できる量は2倍になる